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Abstract We show that the through-bond currents in a closed molecular network
originate from their topologically invariant edge-homologies. When applied to double
toroidal structures they give rise to topologically induced currents whose 3D mani-
festations are highly sensitive to the way both loops are merged together i.e. on the
nature of their junction.
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1 Introduction

Junctions of carbon nanotubes could form the basis of a whole new scala of nanostruc-
tures. In the present paper we study tetrapod junctions made of a negative curvature
network joining four nanotubes. The open nanotube ends are pairwise connected into
two loops forming a double toroid. Through-bond currents in this topology can be
studied using the symmetry extensions of Eulers theorem [1].

Tight-binding band calculations for tetrapod junctions have recently been presented
by Nakada et al. [2] and the geometry of carbon nanotube junctions has been described
by László [3]. The starting point of our analysis is the celebrated polyhedral theorem,
which relates the number of vertices (atoms), edges (bonds) and faces of a molecular
network. For a polyhedron which can be mapped on a sphere one has:
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V − E + F = 2 (1)

This formula was already known to Euler and dates back to the middle of the 18th
century [4]. Extensions to networks on more intricate topologies and in higher dimen-
sional spaces were subsequently made by Schläfli [5] and Poincaré [6]. In the present
article we limit ourselves to molecular networks on 2D-closed surfaces for which the
highest-dimensional components are faces. The Euler equation for networks on these
surfaces reads:

V − E + F = 2 − 2g (2)

where g stands for the genus or the number of ‘holes’ in the surface [7]. For example,
a torus will be of genus 1 as it has one hole, whereas the double torus has two holes
and therefore genus 2. Less well known is the adaptation of (2) to a more general form
where instead of just numbers one relates the induced representations spanned by the
different components of the polyhedron [1]:

�σ (v) − �↑(e) + ��( f ) = �(H0) − �(H1) + �(H2) (3)

The terms on the right-hand side of (3) are of special interest as they correspond with
the topological invariants or homologies of the polyhedron and can be used to derive
the topologically induced through-bond currents of the polyhedron.

In Sect. 2 we give a brief introduction into the theory of polyhedral complexes which
are the mathematical analogues of what a chemist would call a polyhedron. In Sect. 3
we discuss the basic concepts of homology theory which lie at the basis of the symmetry
extension of the Euler equation, and explain the symmetry extended forms of the Euler
equation (3). Finally in Sect. 4 we will make use of the firm mathematical foundations
of the previous sections to investigate the topologically induced through-bond currents
of some double-toroidal networks which may be envisaged as the junction of two
carbon nanotube loops.

2 Polyhedral complexes

In the chemical literature a polyhedron refers to a molecular network (consisting of
atoms and bonds) mapped on a 2D surface which encloses a finite region of space. Its
constituting components are denoted as vertices, V , edges, E , and faces, F . Turning
from chemistry to mathematics one must become acquainted with the ingredients
of a polyhedral complex in the mathematical sense [8]. In principle a mathematical
complex has the same ingredients as its chemical analogues but there are some non-
trivial amendments.

The structural elements at the lowest level are trivial and correspond with zero-
dimensional vertices, denoted as vi . At the next level we find the one-dimensional
edges which are no longer just lines connecting two vertices, but rather vector-like
objects, pointing from one vertex to another. An edge can thus be represented as an
ordered pair (viv j ) where we agree to identify the first vertex vi as the tail and the
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second vertex v j as the head of the vector. The ordering is of course purely a matter
of choice but we can always say that the edges (viv j ) and (v jvi ), with vertex order
inverted, are related by the equation:

(viv j ) = −(v jvi ) (4)

At the third and highest level, we find the two-dimensional faces, which are nothing
else than an ordered closed loop of vertices. For instance, a triangular face consisting
of the vertices vi , v j , vk , may be denoted as the ordered trio (viv jvk) and forms a
closed loop, vi → v j → vk → vi . The ordering of the vertices provides the face with
a rotor-like behavior. Again, if we invert the ordering, we invert the sense of rotation,
and we can write:

(viv jvk) = −(vkv jvi ) (5)

As in all organised structures consecutive layers are in contact. The top-down descent
from higher to lower dimensional objects is called bordering or taking the boundary.
The boundary of a face is the sum of the arrows along the surrounding edges, and can
be most easily written in a simple pictorial way as:

or as:

δ(viv jvk) = (viv j ) + (v jvk) + (vkvl) + (vlvi ) (6)

where the Greek letter δ represents the boundary operation. Similarly the boundary of
an edge is the difference between its head and its tail:

or:

δ(viv j ) = v j − vi (7)

Before we can turn to the interpretation of the symmetry extended Euler equation,
we must first define the action of the point-group symmetries of a polyhedron on its
constituting elements. For the vertices the action of a symmetry operation R is very
simple as it just carries this vertex onto another vertex of the complex. Hence we can
write:

Rvi = vRi (8)
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where Ri is the image of vertex i under this mapping. All higher dimensional ingre-
dients of the complex are built up from ordered combinations of vertices so (8) will
be sufficient to define the action of a symmetry element R on all components. Indeed
for an ordered pair one has:

R(viv j ) = (vRi vR j ) (9)

where the resulting image is once again an edge of the complex, although it might
be that it was defined in the opposite sense as (vR j vRi ) in which case we can always
write

R(viv j ) = −(vR j vRi ) (10)

Finally the same can be said for the faces, where the image must once again be a
face of the polyhedron although its sense of rotation could be opposite to the sense
originally defined for the face.

We are now fully equipped to determine the transformation matrices which describe
the action of the symmetry elements on the different components of the polyhedral
complex. In general these representations will be reducible but they can always be
decomposed into irreducible representations using the standard techniques of character
theory [9]. The resulting sets of irreps are denoted as �σ (v), �↑(e) and ��( f ) for
respectively the vertices, the edges and the faces where the indices σ,↑,� refer to
the scalar, vector and rotor-like behavior of these different layers of organisation. The
symmetry extended Euler equation is now just a restatement of the original Euler
equation where the numbers of components are replaced by their corresponding irreps
under the symmetry group of the complex. For a simple spherical complex one then
has:

�σ (v) − �↑(e) + ��( f ) = �0 + �ε (11)

This equation shows us that if we take the alternating sum over the irreps of the different
structural components we end up with two one-dimensional irreps �0 and �ε . They
are readily distinguished from the other irreps as they are the only ones which do not
find a counterpart within the set of irreps on the edges and therefore survive taking the
alternating sum.

As an easy example to (11), in Fig. 1 we give a pictorial scheme of the different
irreps for a tetrahedral complex of Td symmetry. Substituting these irreps into (11)
gives:

�σ (v) − �↑(e) + ��( f ) = A1 + T2 − T2 − T1 + A2 + T1 = A1 + A2 (12)

The two surviving irreps can be identified as the vertex representation A1 and the face
representation A2 and are the only elements which are not the boundary of a higher
dimensional component or which have no lower dimensional boundary. They form a
set of topological invariants of the complex and within mathematics they are called
homologies.
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Fig. 1 Symmetry adapted linear combinations for the different components of a tetrahedral complex

The first homology for the sphere corresponds with a vertex homology �0 trans-
forming as the totally symmetrical representation (A1 within Td ). It can be seen as
resulting from an electric monopole in the center of the complex which results in equal
charges on all vertices of the network and hence no net current flow over the edges.
The second spherical homology is a face homology �ε transforming as the pseudo-
scalar representation (A2 within Td ). Its easiest interpretation comes from considering
a magnetic monopole located in the center of the complex and leading to a set of
equally-sensed face rotors. For this special face-representation the projection of the
face-rotors onto the edges leads to equally large but opposing current-flows on all
edges which nicely cancel out. In other words, there is no edge-boundary for this face-
representation. These two homologies are however not solely restricted to the sphere,
but show up in all 2D oriented complexes of higher genera. In (2) they can be related to
the “2” directly following the equation sign. The other term “−2g” is, as we shall see
in the next section, completely due to edge-homologies. For the sphere, g = 0, such
edge-homologies are obviously absent, but turning to higher topologies, the addition
of every new hole in the surface, g+=1, creates two extra edge-homologies. These
edge-homologies play a central role in the remainder of this article as they lie at the
basis of the topologically invariant through-bond currents.

3 Homology groups

In order to find the homologies of a given complex we start from the definition of a
p-chain [10,11]:
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A p-chain cp in a complex is a linear combination of p-dimensional objects
with integer coefficients

cp =
∑

i

κi (v
i1 , . . . , vi p+1) (13)

Two p-chains of the same dimension can be added by adding their coefficients. In
this way the p-chains generate a group, the p-chain group C p, which is isomorphic to
direct sums of Z. A general theorem of homology theory states that—in the absence
of torsion—this p-chain group C p can be further factorized as:

C p ∼= Z p ⊕ Bp−1 with

Z p = ker δp (14)

Bp = im δp+1

The p-cycle group, Z p, is the kernel of the boundary operation δp and thus contains
all elements of C p that have no boundary in the chains with one dimension less. The
p-boundary group, Bp, is the image of the boundary operation δp+1 and therefore
collects all the elements of C p that are themselves boundaries of chains with one
dimension more. Note that Bp is always a subgroup of Z p as δpδp+1 = ø. We can
thus form the quotient group:

Hp = Z p/Bp (15)

where Hp is called the p-th homology group. The homology groups thus measure the
extent to which the complex has p-cycles which are not boundaries. Using (15) we
can factorize the p-chain group even further:

C p ∼= Hp ⊕ Bp ⊕ Bp−1 (16)

A detailed description how these homology groups can be calculated will be deferred
to a separate publication. Here we restrict ourselves to the listing (Table 1) of the
different groups connected to the tetrahedral complex. The cycle-groups C0, C1 and
C2 are listed at the top of the table and are resp. isomorphic to ZV , ZE and ZF . Beneath
them one also finds their complete decomposition in terms of (16). When we now,
like in the original Euler equation, take the alternating sum over the cycle-groups we
obtain:

C0 − C1 + C2 = H0 + B0 − B0 − B1 + H2 + B1 = H0 + H2 (17)

This exactly parallels the result of (11) where however irreducible representations are
assigned to homology groups. This assignment provides interesting additional infor-
mation to the homology groups, allowing to discriminate homology groups with the
same p, as will be discussed in the next section. A thorough account of the connec-
tion between both Eqs. 17 and 12, namely between the homology groups of oriented
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Table 1 Groups of the tetrahedral complex and their corresponding irreducible representations

C0 ∼= Z4 C1 ∼= Z6 C2 ∼= Z4

H0 ∼= Z1 → A1 H1 ∼= Z0 → ø H2 ∼= Z1 → A2
B−1 ∼= Z0 → ø B0 ∼= Z3 → T2 B1 ∼= Z3 → T1
B0 ∼= Z3 → T2 B1 ∼= Z3 → T1 B2 ∼= Z0 → ø

complexes and the irreducible symmetries of their corresponding symmetry groups,
can be found in Ref. [12]. The connection between both descriptions is also indicated
in Table 1.

4 Currents on double toroids

Before we turn to the discussion of the edge-currents on double-toroidal networks, we
first review some results for the torus for which the extended Euler equation reads[13]:

�σ (v) − �↑(e) + ��( f ) = �0 + �ε − �Rz − �Tz (18)

As indicated before the representations �0 and �ε correspond to the ubiquitous vertex
and face homologies. The other terms represent the two edge-homologies and are
drawn schematically in Fig. 2. The first of them, �Rz , corresponds with a charge flow
along the loop of the torus and transforms in exactly the same way as a magnetic dipole.
The second one, �Tz , gives rise to a whirling motion around the spine of the torus.
It has the symmetry of an electric dipole and can be seen to result from an anapole
moment i.e. a circular magnetic field inside the torus. An interesting situation occurs
when the torus is decorated with a chiral network, as in this case both moments can
interact, giving rise to helical charge flows [14]. This clearly indicates that networks
on higher-genus surfaces can sustain interesting non-trivial edge-currents which are
inaccessible for simple spherical networks.

The next surface, after the sphere and the torus, is the double torus or ‘pretzel’,
which can be formed by connecting two toroidal loops to a common junction with
four pore holes. Various types of junctions can be constructed where the geometry
and symmetry of the junction will have a direct effect on the spatial realisations of
the resulting edge-current patterns. For our current examples, we limit ourselves to
trivalent networks which obey the following formula:

∑

n

(n − 6) fn = 12(g − 1) (19)

Fig. 2 Schematical
representation of the two
edge-homologies of a torus
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Fig. 3 Trivalent junction with
12 heptagonal defects exhibiting
D2h symmetry

Fig. 4 Flat (Left) and staggered (Right) double torus build from the junction shown in Fig. 3

The summation runs over all possible face sizes n with fn indicating the number of
faces of size n. For a double torus, g = 2, the RH-side of (19) reads “12”, which
can be accomplished by starting with a hexagonal lattice and adding some heptagonal,
octagonal or even nonagonal defects. The only restriction is that the total weight of the
defects should equal “12”, so one can for instance take 12 heptagons (12 × (7 − 6) =
12), 6 octagons (6 × (8 − 6) = 12), 4 nonagons, (4 × (9 − 6) = 12), or a well-chosen
combination thereof.

The first two examples of double toroidal networks we will investigate are both
constructed from the junction shown in Fig. 3. It has 12 heptagonal defects and as a
stand-alone entity it exhibits D2h spatial symmetry. To form a double torus out of this
junction one has to make pairwise connections between the four holes, labeled A to
D in Fig. 3, which can be done in essentially two different ways. A first way consists
in the pairwise linkage of neigboring holes (A → B and C → D). These connections
can be easily made by loops which lie in the same plane as the junction, thereby
leading to a “flat” double torus. In a second way, oppositely lying holes (A → C
and B → D) are identified. In this case both connecting loops are obligated to leave
the plane leading to a “twisted” double torus. The connections between the holes
can always be performed by an all-hexagon carbon nanotube for which the diameter
exactly matches the diameter of the holes. In Fig. 4 we show both a flat and a staggered
double torus based on the junction of Fig. 3.
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Table 2 Characters of the
vertices, edges and faces for the
flat double torus under the
symmetry elements of C2h

E C2 i σh

V 60 0 0 8
E 90 −2 0 4
F 28 0 0 −4

From a topological point of view, the lengths of the connecting nanotubes are how-
ever immaterial as they do not change the overall topology of the resulting structure.
In the following, we will therefore link the holes by a single ring of hexagons. This has
the main advantage that, while still fully grasping the topological implications of the
junction, it reduces the number of ingredients of the complex (V, E, F) to an absolute
minimum, thereby greatly simplifying the calculations of the edge-homologies.

Let us start with the “flat” double torus build from the junction of Fig. 3. Although
the stand-alone junction has D2h symmetry, the attachment of both loops leads to a
closed structure with only C2h symmetry. The characters for the vertices, edges, and
faces under the four operations of this group can be found in Table 2. A reduction of
these representations into irreps leads to:

�σ (v) = 17Ag + 13Bg + 13Au + 17Bu

�↑(e) = 23Ag + 22Bg + 21Au + 24Bu

��( f ) = 6Ag + 8Bg + 8Au + 6Bu (20)

Comparing these results with the general expression of the symmetry extended Euler
equation:

�σ (v) − �↑(e) + ��( f ) = �(H0) − �(H1) + �(H2) (21)

we find the following homologies:

�(H0) = Ag

�(H1) = Ag + Au + Bg + Bu

�(H2) = Au (22)

Note that simply taking the alternating sum in this case would lead us to the false
result that there are only two homologies namely the edge-homologies transforming
as Bg and Bu . If we however take into account that there must always exist one vertex-
homology transforming as the total symmetric representation and one face-homology
transforming as the pseudoscalar representation, we will end up with the correct result
of (22). In Fig. 5 we show the Ag edge-homology, with the exact directions and magni-
tudes of the flows indicated for each edge. We however limited ourselves to the upper
part of the network as the flows on the lower part can be easily reconstructed by use
of the Ag symmetry. A visual inspection shows that this special edge-representation
indeed corresponds with an edge-homology. It has no vertex-boundary because at every
vertex the sum of the incoming and outgoing currents is nicely balanced, leading to

123



426 J Math Chem (2009) 45:417–430

Fig. 5 Ag edge-homology for a flat double torus build from the junction of Fig. 3

Fig. 6 Current-flows corresponding with the four edge-homologies of the flat double torus

no net buildup of charges on the vertices. At the same time, for every face, the sums
of the left and right turning currents are equal. There is thus no net current-rotation on
any of the faces, meaning that this Ag edge-representation does not form the bound-
ary of some higher face-representation. As we saw earlier, these are exactly the two
conditions for being an edge-homology. It would be quite tedious to visualize all the
homologies in such a detailed form. We rather limit ourselves to a more schematical
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Table 3 Characters of the vertices, edges and faces for the staggered double torus under the symmetry
elements of C2v

E C2 σv(xz) σv(yz)

V 60 0 8 4
E 90 −6 −2 −6
F 28 0 −10 −10

approach but which still reveals the main features of the edge-flows. In Fig. 6 one
can find such schemes for the four edge-homologies of our flat double torus. The
Ag homology shows conrotating current flows around the loops which mostly cancel
each other out at centre of the junction as could be seen from Fig. 5. The Bu homology
on the contrary consists of counter rotating current flows on both loops, which by
their cooperative effect lead to significant currents through the junction. Both other
homologies give rise to anapole moments resulting from whirlings around the loops.
In the Au case both whirlings are conrotating and thereby once again deplete the
edge-currents on the junctions center, whereas the Bg representation leads to counter
rotating anapoles reinforcing the currents on the junctions center while even creating
a whirling motion around the junction itself. These four edge-homologies give rise to
nice topological invariant edge-currents which are clearly separated by symmetry. On
the other hand they are fairly straightforward summations or subtractions of the single
torus invariants, as symmetry dictates.

The case where opposite holes of the junction of Fig. 3 are connected will however
show some more intricate behaviour. Due to its staggered form, its spatial symmetry
is limited to C2v . The characters of the different components under this symmetry are
given in Table 3, and reduce to the following irreps:

�σ (v) = 18A1 + 12A2 + 16B1 + 14B2

�↑(e) = 19A1 + 23A2 + 25B1 + 23B2

��( f ) = 2A1 + 12A2 + 7B1 + 7B2 (23)

giving rise to the following homologies:

�(H0) = A1

�(H1) = 2B1 + 2B2

�(H2) = A2 (24)

Inspection of (24) shows that the spatial symmetry group C2v does no longer allow
us to fully distinguish the four edge-homologies by their representational signature.
Fortunately this problem can be circumvented, if instead of its spatial symmetry one
makes use of the full combinatorial symmetry group of the complex. Recall that the
combinatorial symmetry group of a complex is defined as all vertex-permutations
which map vertices onto vertices, edges onto edges and faces onto faces. For the
present case, the combinatorial symmetry group of the complex is isomorphic to D2h ,
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Table 4 Characters of the vertices, edges and faces for the staggered double torus under the symmetry
elements of D2h

E C2(z) C2(y) C2(x) i σxy σxz σ(yz)

V 60 0 0 0 0 8 8 0
E 90 −6 0 0 0 4 −2 −6
F 28 0 2 2 0 −4 −10 −10

which corresponds exactly with the symmetry of the stand-alone junction. Indeed, as a
purely combinatorial object, the double toroidal network does not need to worry about
self-intersections thereby lifting the symmetry-breaking restriction that the connecting
loops should leave the plane of the junction. In Table 4 we present the characters under
this full combinatorial D2h producing the following sets of irreps:

�σ (v) = 10Ag + 5Au + 7B1g + 7B2g + 6B3g + 8B1u + 8B2u + 9B3u

�↑(e) = 10Ag + 11Au + 12B1g + 12B2g + 11B3g + 9B1u + 12B2u + 13B3u

��( f ) = Ag + 7Au + 5B1g + 4B2g + 4B3g + B1u + 3B2u + 3B3u (25)

which provides a full symmetry resolution of the four edge-homologies:

�(H0) = Ag

�(H1) = B2g + B3g + B2u + B3u

�(H2) = Au (26)

Schematic sketches of the edge-homologies are given in Fig. 7. The B2u and B3u

modes are easy to interpret. They both correspond to a current flow around one of the
loops together with the total absence of any edge current within the other loop. So
contrary to the flat double torus, the symmetry of the present system forbids a coupling
between circular edge-currents on both staggered loops. The remaining two invariants,
B2g and B3g , form very special cases as they couple an anapole-like moment in one
of their loops to a strange looking edge-current in the second loop consisting of two
oppositely running circular currents at the inside and the outside of the loop. A physical
interpretation of such a current is not straightforward but similar counter-rotating
currents have been predicted within a benzene molecule as a non-linear response to
high external homogeneous magnetic fields [15].

As a last example we will study the double-toroidal network based on the tetrapod
junction of Fig. 8. It is built from four nonagonal defects and exhibits Td symmetry
which will however be lowered to D2d symmetry by the addition of two loops. Using
the corresponding characters of Table 5 we can easily derive the irreps:

�σ (v) = 4A1 + 2A2 + 2B1 + 2B2 + 6E

�↑(e) = 3A1 + 5A2 + 4B1 + 4B2 + 10E (27)

��( f ) = 3A2 + 3B1 + 2E

which translate in the following homologies:
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No Flow

No Flow

No Flow

No Flow

B2g B2u

B3g B3u

Fig. 7 Current-flows corresponding with the four edge-homologies of the staggered double torus

Fig. 8 Trivalent junction with
four nonagonal defects
exhibiting D2d symmetry

�(H0) = A1

�(H1) = 2E (28)

�(H2) = B1

The edge-homologies can be seen to transform as two double degenerated E repre-
sentations. A complete separation based on the spatial symmetry group of the com-
plex is therefore impossible. The combinatorial symmetry group of the complex will
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Table 5 Characters of the
vertices, edges and faces for the
staggered double torus under the
symmetry elements of D2d

E 2S4 C2 2C ′
2 2σd

V 24 0 0 0 4
E 36 0 −4 −2 −2
F 10 0 2 0 −6

not cure this problem as it is isomorphic with the spatial group. Apparently in this
case the edge-homologies are degenerate and dipolar and anapolar modes can mix
freely.

5 Conclusions

The double torus or ‘Pretzel’ corresponds to two toroidal loops that are connected to a
common junction with four pore holes. Various types of junctions can be constructed.
We have studied three examples of symmetric junctions, based on trivalent graphs,
consisting of a hexagonal lattice with heptagonal and nonagonal defects, representing
a flat, staggered and tetrapod type junction of four carbon nanotubes. For all these
double tori bond-currents were constructed that correspond to topological invariant
edge-homologies and represent the principal electric and magnetic moments of the
molecular frame. For two cases the spatial or combinatorial symmetry of the junction
leads to a complete resolution of the edge-homologies while for the tetrahedral tetrapod
junction the edge-homologies follow identical representations and can be combined
freely. Most interestingly in the case of the staggered geometry with heptagonal defects
an anapole moment on one ring is coupled through the junction to a combination of
circular currents on the other ring. As these examples show, a variety of patterns is to
be expected for the transmission of bond currents through carbon nanotube junctions.
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